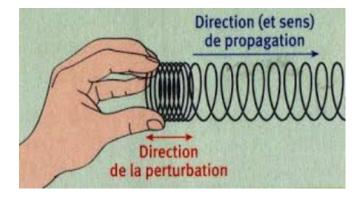

Ondes mécaniques progressives : Activités


- Qu'est ce qu'une onde mécanique?

Expérience 1 : On tend horizontalement une corde , l'une des extrémités est fixée à un support puis on fait subir l'autre extrémité un déformation verticale vers le haut

Expérience 2:

On dépose un ressort de grande longueur à spires non jointives horizontalement . On comprime quelques spires de l'une des extrémités et on les lâche .

Expérience 3:

On laisse tomber une goutte d'eau sur la surface de l'eau contenue dans une cuve .

Exploitation:

1. Décrire les phénomènes observés dans chaque expérience En remplissant le tableau suivant :

Expérience	Le milieu	Direction de déformation	Nature du milieu	État du milieu
Exp 1				
Exp 2				
Exp 3				

ment de la matière? justifier votre r	
Comment se propage une	onde sonore?
Expérience 1 :	
On place une sirène en fonctionnem pompe à vide , on fait aspirer l'air c se disparaît de fur à mesure que le v	ent sous une cloche en verre contenant de l'air . Avec une ontenu dans la cloche . on constate que le son de la sirène ride soit répandu dans la cloche .
Expérience 2 : On place une bougie enflammée deva la direction de la flamme .	ant la membrane d'un haut - parleur qui émet un son dans
même direction de cet effet	e sous l'effet du son qui provient du haut parleur dans la
Exploitation : 1. peut-on considérer que le son est	une onde mécanique ? Justifier .
2. Quel type d'onde mécanique Justifier .	s'agit-il , onde mécanique transversale ou longitudinale?
propagation déplacement	dilatation compression
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	air

Vitesse de propagation d'une onde

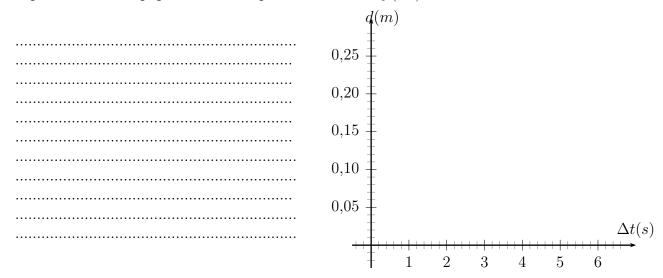
Expérience:

Mesure de la vitesse de la propagation d'une onde le long d'une corde homogène tendue .

Compression du fluide

Dilatation du fluide

Pour cela on utilise deux phonocapteurs B_1 et B_2 séparés de distance d et qui sont reliés à un


chronomètre .

Lors du passage d'une onde mécanique devant la cellule B_1 le chrono fonctionne une fois qu'elle passe devant la cellule B_2 le chrono sarrête en mesurant la durée de propagation de l'onde au cours de la distance d

On réalise plusieurs mesures pour des différentes distances et on obtient le tableau suivant :

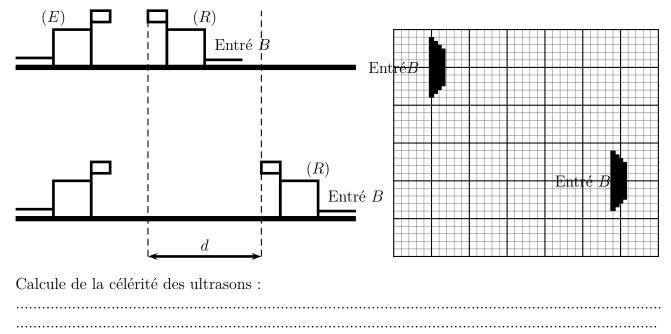
d(m)							1 1
$\Delta t(s)$	1.36	3.39	5.03	6.93	8.163	10.13	

On représente sur un papier millimétrique la courbe $d = f(\Delta t)$

mécanique le long d'une corde?
On conserve la même longueur de la corde et on fait changer la tension de la corde on observe que la vitesse de propagation varie de la façon suivante :
lorsque la tension de la corde augmente , la vitesse de propagation ou la célérité augmente .
Pour une même tension on change la longueur de la corde i.e sa masse linéique
$_{\prime\prime}$ $_{-}$ m

$$\mu = \frac{n}{l}$$

la vitesse diminue	1 1 0	0	0	0	
,ia vioesse diffilliae					
Conclusion :					
					•••


.....

Mesure de la vitesse de propagation d'une onde sonores

Expérience

Un émetteur (E) et un récepteur (R) d'ultrasons sont placés sur le même axe . Ils sont situés à une distance d=40,0cm l'un de l'autre . les deux appareils sont reliés électriquement aux entrées voie 1 voie 2 d'un oscilloscope . Calculer la célérité des ultrasons dans l'air ambiant .

sensibilité horizontale 0.25ms/div

Ondes mécaniques progressives : Exercices

Exercices 1

2ème Bac PC

Trouver les propositions fausses et les corriger :

- 1. La propagation du son dans l'air est une onde transversale;
- 2. Le son dans l'air correspond à un phénomène de compression-dilatation des tranches d'air;
- 3. Lors de la propagation d'un son dans l'air , les molécules sont entraînées depuis la source vers le récepteur ;
- 4. La propagation du son s'accompagne d'un transport de matière et d'un transport d'énergie .
- 5. les ondes mécanique progressives peuvent se propager dans le vide;
- 6. La distance D franchie par une onde mécanique progressive de célérité V est donnée par la relation :

$$D = V.\tau$$

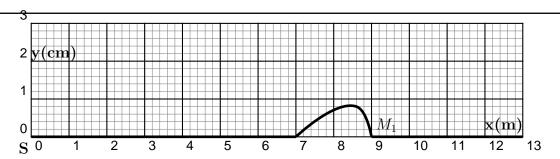
 τ la durée de la propagation sur la distance D;

- 7. Plus une corde est tendue , plus la célérité des ondes transversales le long de cette corde est grande;
- 8. Pour parcourir 5,0 m le long d'une corde , une onde met de mi-seconde . la célérité de cette onde est alors de 20m/h

Exercices 2

Au cours d'une promenade estivale , un orage éclate . Ahmed entend le tonnerre 8 seconde après avoir perçu l'éclair . On admet que le signal lumineux se transmet quasi instantanément.

- 1. Quelle est la source de cet onde sonore? si besoin , consulter l'internet . Quel est le milieu de propagation? Quel est le récepteur du son perçu?
- 2. L'onde sonore est elle qualifiée de longitudinale ou de transversale?
- 3. Quel est l'ordre de grandeur de la vitesse de son dans l'air?
- 4. À Quelle distance de l'orage Ahmed se trouve t il?


Exercices 3

On a schématiser (en coupe , dans un plan vertical) la surface de l'eau lors de passage d'une vague .

À la date t=0 s, le front de l'onde a quitté le point S de la surface.

À la date t=3,0 s la forme de la surface de l'eau à l'aspect dessiné ci-dessous . M_1 est la position de front de l'onde à l'instant t_1 .

année scolaire 2017-2018

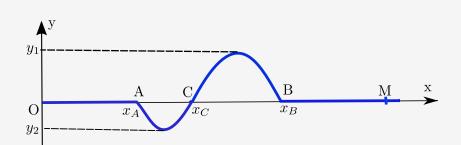
- 1. L'onde est-elle transversale ou longitudinale?
- 2. Calculer la valeur de la célérité de l'onde .
- 3. Quel est la durée Δt du mouvement du point de la surface lors du passage de l'onde?
- 4. Où se situe le front de l'onde à la date t' = 1, 0s?
- 5. Un point M_2 est situé à la distance 12cm de M_1 avec quel retard sera-t-il atteint par le front de l'onde ?

Exercices 4

Une explosion se produit à 275m au dessus d'une couche de glace de 867m d'épaisseur qui se trouve sur l'eau d'océan . Si la température de l'air est de $-7^{\circ}C$, quelle durée prend-t-il le son pour atteindre un récepteur qui se trouve dans un sous marin de recherche à 1250m sous la glace?

On donne $v_{air} = 20\sqrt{T}$ où T la température en kelvin; la vitesse du son dans la glace est $v_{glace} = 3, 2 \times 10^3 m/s$ et la vitesse de son dans l'eau $v_{eau} = 1530 m/s$

exercice 5


Sur une côte maritime , un dispositif d'écoute est constitué de deux micros placés sur la même verticale , l'un dans l'eau , l'autre dans l'air . Une explosion se produit à la surface de la mer. Chacun des deux micros se trouve à une distance d du dispostif. Le bruit de cette explosion parvient aux deux récepteurs avec un décalage $\Delta t = 3,00s$.

La célérité du son V_{air} vaut 340m/s dans l'air et $V_{eau} = 1500m/s$ dans l'eau .

- 1. Écrire une relation entre la durée t_1 mise par le son se propageant dans l'air, d et V_{air}
- 2. Écrire une relation entre la durée t_2 mise par le son se propageant dans l'eau, d et V_{eau}
- 3. En déduire d

exercice 6

On schématiser sur le document ci- dessous , a une date donnée t, une onde transversale se propageant le long d'une corde . L'axe Ox est confondu avec la corde au repos . O est le point où est provoquée la perturbation à la date t=0. Cette perturbation transversale (déplacement y) se propage à la célérité V=20m/s.

On donne $x_A=100cm$; $x_B=130cm$; $x_C=110cm$; $x_M=160cm$

- 1. À quelle date l'onde arrive-t-elle en B?
- 2. À quelle date l'onde quitte-t-elle en B?
- 3. Définir est calculer le retard τ_B de l'onde perçue en M par rapport à celle perçue en B
- 4. Représenter l'onde à l'instant $t'=t+\tau_B$