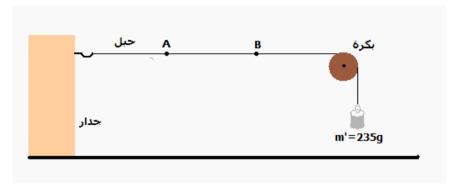
## الموجات الميكانيكية المتوالية


2 \_ أحسب سرعة انتشار الصوت في ظروف التجربة .

## التمرين 4 : سرعة انتشار موجة طول حيل

تعطي العلاقة  $\frac{F}{\mu}$  ، سرعة انتشار موجة طول حبل موثر حيث  $v=\sqrt{\frac{F}{\mu}}$  شدة توتر الحبل و  $\mu$  كتلته

الطولية .

نجعل حبلا موترا بواسطة كتلة معلمة m'= 235g كما هو مشار إليه في التبيانة أسفله :



- 1 ـ أحسب شدة توتر الحبل F
- . للحبل  $\mu$  للحبل الكتلة الطولية بالكتلة الطولية ما . m=176
- (  ${
  m m/s}$  ) لها بعد السرعة  ${
  m v}=\sqrt{\frac{F}{\mu}}$  لها بعد السرعة (  ${
  m m/s}$  ) اعتمادا على التحليل البعدي ، بين أن العلاقة
  - 4 \_ أحسب سرعة انتشار الموجة طول هذا الحبل
- 5 ــ نمعلم نقطتين من الحبل A و B حيث المسافة بينهما هي d=8,2m ، أحسب المدة الزمنية  $\Delta$  الكرمة  $\Delta$  لكى تنتشر الموجة من A إلى B .
- 6 \_ أوجد تعبير سرعة انتشار الموجة طول الحبل بدلالة m و g و  $\mu$  . واستنتج الكيفية التي تتغير بها السرعة v بدلالة m ( طالة تناقصية أم دالة تزايدية )
  - . أحسب الكتلة  $m_0$  التي يجب إضافتها للكتلة m' لكي تتضاعف سرعة انتشار الموجة  $m_0$

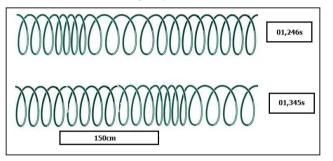
## التمرين 5 : سرعة انتشار موجة ودرجة الحرارة

سرعة انتشار الصوت في الهواء تتناسب اطرادا مع الجدر ألتربيعي لدرجة الحرارة المطلقة T للهواء . 1 ـ عبر رياضيا عن هذه العلاقة .

2 \_ أحسب سرعة انتشار الصوت في الهواء عند درجة الحرارة ℃0 ، ثم عند ℃25 .

نعطي سرعة الصوت في الهواء عند درجة الحرارة ℃15 هي v=340m/s

#### التمرين6: استغلال رسم ميباني .


يمثل الشكل التالي حبلا (AB) طوله  $\ell=10$  ، تنتشر طوله موجة مستعرضة في اللحظتين اللتين تاريخهما  $t_1$  .  $t_2$ 

## الموجات الميكانيكية المتوالية

# الموجات الميكانيكية المتوالية Ondes mécaniques progressives السلسلة 1 علوم الرياضية (أ) و (ب)

## تمرین 1: موجة میكانیكیة طول نابض .

نحدث موجة طول نابض وذلك بضغط بعض من لفاته وتحريرها فجأة . يمثل الشكل أسفله حالة النابض في لحظتين  $t_{
m 2}$  و



- 1 \_ هل الموجة المنتشرة طول نابض مستعرضة أم طولية ؟
  - 2 \_ صف حركة لفات النابض عندما تصلها الموجة
  - 3 ـ أحسب سرعة انتشار الموجة طول النابض

# التمرين 2 : العلاقة بين التأخر الزمني والمساقة والسرعة

نقطتین  $\, M \,$  و  $\, M \,$  من حبل ، تصلهما بالتتابع موجة میکانیکیة مستعرضة ، سرعة انتشارها  $\, v = 1.5 \text{m/s} \,$ 

d=12cm و M علما أن المسافة الفاصلة بينهما هي T بين النقطتين M و M علما أن المسافة الفاصلة بينهما هي T عند اللحظة M عند اللحظة M عند اللحظة M عند اللحظة M M M

## التمرين 3 : حساب سرعة الصوت .

یلتقط میکروفونان  $M_1$  و  $M_2$  صوتا منبعثا من منبع صوتی نقطی S .

یوجد المیکروفونان  $M_1$  و  $M_2$  علی استقامة واحدة مع المنبع الصوتی S ،

يبعدان عن بعضهما البعض بمسافة d=68cm . يوجد المنبع S خارج القطعة

.  $M_2$  و  $M_1$  المحدودة بالنقطتين

نعاين على شاشة كاشف التذبذب الإشارات الملتقطة بواسطة  $M_2$   $M_2$ 

عبر وسيط معلوماتي ( أنظر الشكل )

1\_ ارسم تبيانة التركيب التجريبي المستعمل .

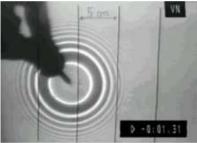
## الموجات الميكانيكية المتوالية

حالة سكون وu سرعة جريان المائع عندما يكون في حركة . تكون سرعة انتشار الموجة فوق الصوتية تساوي V+u عند انتشار الموجة في منحى جريان السائل و V-u عند انتشارها في المنحى المعاكس .

في شبكة القنوات يعبرها مائع بسرعة u ، نضع بداخلها باعث E ومستقبل R تفصل بينهما مسافة L . باعتبار أن منحى جريان المائع من E نحو R.

يبعث E إشارة قصيرة يلتقطها R ،بواسطة راسم التذبذب يمكن قياس المدة الزمنية المسغرقة لانتشار الإشارة  $\theta_1$ 

نعكس دوري الباعث E والمستقبل R ،بنفس الطريقة نقيس المدة الزمنية المسغرقة لانتشار الإشارة  $\theta_2$  .


- . u و V و L أوجد تعبيري  $\theta_1$  و  $\theta_2$  بدلالة
- .  $\theta_2$  و  $\theta_1$  بين  $\tau$  استنتج الفرق الزمنى  $\tau$  بين  $\theta_2$  و
- 3 \_ أعط تعبير u بدلالة L و V و τ . أحسب u .

ا أمام v كيف يصبح الفرق الزمني au في حالة إهمال u أمام v

نعطي : τ=4,0μs ، V=1500m/s ، L=1,5m

### <u>التمرين 10 : دراسة موجة ميكانيكية دائرية .</u>

نحدث بواسطة مسمار موجة دائرية على سطح الماء لحوض الموجات فنحصل على الشكل المبين أسفله .



1 \_ هل الموجة الدائرية على سطح الماء مستعرضة أم طولية ؟ علل جوابك .

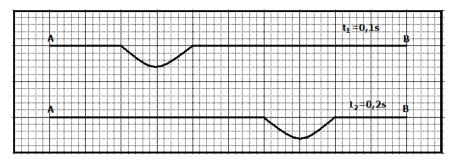
2 ـ نقيس تغيرات أشعة الدوائر الممركزة في المنبع S بدلالة الزمن فنحصل على الجدول التالي :

| r(m)  | 0 | 0,01 | 0,02 | 0,03 | 0,04 | 0,05 |
|-------|---|------|------|------|------|------|
| t (s) | 0 | 0,5  | 1    | 1,5  | 2    | 2,5  |

أ \_ أحسب سرعة انتشار الموجة .

ب ــ أحسب شعاع الدائرة عند اللحظة ذات التاريخ t=3s .

ج ـ أحسب لحظة وصول الموجة إلى النقطة M التي توجد على مسافة d=10cm من المنبع S


د ــ أحسب التأخر الزمني بين S و M .

#### تمرین 11 : استغلال رسم مبیانی

نحدث عند الطرف S لحيل مرن ، موجة مستعرضة تنتشر بسرعة v=10m/s .

عند t=0s يوجد مطلع الإشارة عند المنبع S . يمثل المنحنى أسفله ، تغيرات استطالة المنبع بدلالة الزمن t . نعتبر نقطة M من الحبل ، توجد على مسافة SM=4m .

# الموجات الميكانيكية المتوالية



- 1 \_ أعط تعريف موجة مستعرضة .
- 2 \_ عين سرعة انتشار الموجة طول الحبل .
  - 3 \_ عين طول الموجة واستنتج مدتها
- 2 \_ في أي تاريخ انبعثت الموجة من النقطة A ؟

#### التمرين 7 : سرعة انتشار موجة مدية لتسونامي

في يوم 26 ديسمبر 2004 على الساعة 7h58min حسب التوقيت العالمي حدث زلزال في المحيط الهندي نتجت عنه موجة مدية لتسونامي ( "موجة ميناء" باليابانية ) تختلف عن موجات البحار و المحيطات فهي موجة ضخمة تحتوي على سلسلة من الأمواج حيث ضربت شواطئ كل من أندونيسيا والهند وسيريلانكا فخلفت كما هائلا من الدمار .

توجد بؤرة الزلزال على عمق 30m و وتبعد عن سومارته Sumarta ( جزيرة هندية ) بمسافة 160km غربا .

تنتشر الموجة المدية لتسونامي على سطح البحر حيث تقطع آلف الكيلوميترات خلال الزمن ومع اقترابها من الشواطئ تنقص سرعة انتشارها .

ننمذج الموجة المدية بموجة ميكانيكية متوالية مستعرضة حيت سرعة انتشارها على سطح البحر ننمذج الموجة المدية بموجة ميكانيكية  $v=\sqrt{g.h}$  صيث g=9.81N/kg صيث  $v=\sqrt{g.h}$ 

- $_{
  m -}$  1 أحسب سرعة هذه الموجة على مستوى سطح البحر الواقع فوق بؤرة الزلزال مباشرة  $_{
  m -}$
- 2 \_ وصلت الموجة المدية لتسونامي إلى شواطئ سومارته على الساعة  $8h29\,\mathrm{min}$  . أحسب سرعة الموجة طول هذا المسير .
  - 3 \_ أعط تفسيرا للفرق بين السرعتين اللتين تم حسابهما سابقا .

# التمرين 8 : حساب سرعة الصوت في فلز النحاس .

عند نقر قناة من النحاس مملوءة بالماء ، نحصل على موجتين صوتيتين نحللهما بواسطة جهاز التسجيل والذي يوجد على مسافة d=200m . يتبن من خلال هذا التسجيل أن الفرق الزمني بين هاتين الموجتين هو  $\Delta t=9,34.10^{-2}s$  .

نعتبر أن الماء في حالة سكون في القناة .

- 1 \_ فسر لماذا تم الحصول على موجتين صوتيتين ؟
- 2 \_ أحسب سرعة الصوت في النجاس علماً أن سرعته في الماء هي : V<sub>e</sub>=1500m/s .

# التمرين: حساب سرعة مائع في شبكة القنوات mesure d'une vitesse dans une التمرين: . canalisation .

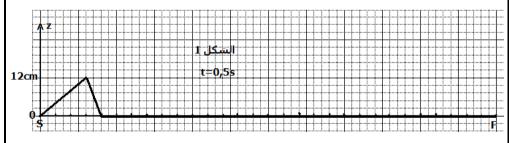
سرعة انتشار الموجات فوق الصوتية les ultrasons في مائع في حالة سكون ليست هي نفسها عندما يكون المائع في حركة . نعتبر V سرعة انتشار الموجة فوق الصوتية في مائع عندما يكون في

# الموجات المبكانيكية المتوالية

نهمل الاحتكاكات ببن الكربة والهواء خلال السقوط ونأخذ كحالة مرجعية لطاقة الوضع الثقالية سطح الماء الراكض.

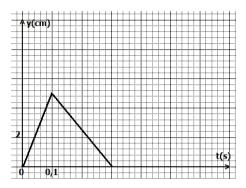
g = 9.8 N/kg و  $\rho = 2.0 \times 10^3 kg/m^3$  و تعطي شعاع الكرية r = 5.0 mm و

 $V = \frac{4}{2}\pi r^3$  : حجم الكرية


- الماء مع سطح الماء  ${
  m v}_{
  m h}$  لحظة اصطدامها مع سطح الماء -1
- 2 \_ عند اصطدام الكربة وسطح الماء تفقد الكربة نصف طاقتها .
- 2 1 ما نوع هذه الطاقة 2 1 حدد الجسم الذي سيكتسب هذه الطاقة بعد التصادم 2 1
  - 2 \_ 2 ماذا نلاحظ على سطح الماء بعد التصادم ؟
- v سرعة انتشار الموجة t=0.1s ، استنتج v سرعة انتشار الموجة للحظة vعلى سطح الماء
  - 4 \_ كيف تتغير هذه السرعة في الحالات التالية:
    - 4 \_ 1 عند سقوط الكرية من ارتفاع h = 50cm
  - 4 ـ 2 عندما نعوض الماء بالزيت ( الكتلة الحجمية للزيت أصغر من الكتلة الحجمية للماء )
- من d = 1,0cm على بعد d = 1,0cm على بعد d = 1,0cm على على على بعد d = 1,0cm من منبع الموجة ( نقطة التصادم )
  - 5 ــ 1 في أي لحظة تصل الموجة السدادة ؟
  - 5 ــ 2 ما الطاقة القصوية التي يمكن أن تكتسبها السدادة عندما تصلها الموجة ؟

#### التمرين 14

الجزء الأول : انتشار موجة طول حيل


نضع بـدئيا حـبلا مرنـا طولـه L = SF = 6,0m علـي الأرض . ونثبـت طرفـه F ، ثـم نقـوم بإحـداث تشــوها عنــد اللحظـة t = 0 بـالطرف الآخـر S مـن الأعلــى نحـو الأســفل . المــدة الزمنيــة لهــذا .  $\Delta t = 0.50s$  : التشوه هي

 $t_1 = 0.50s$  يمثل الشكل (1) مظهر الحبل عند اللحظة

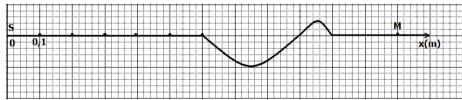


- 1 \_ ما اسم الموجة المحدثة بعد هذا التشوه ؟ هل هي موجة مستعرضة أم طولية ؟
  - 2 \_ بمثل الشكل 2 مظهر الحيل عند اللحظة 2.0s

# الموجات المبكانيكية المتوالية



- 1 \_ حدد مدة التشويه ∆t لنقطة من نقط الحيل.
- . M و S بين النقطتين T و T
- 3 \_ كيف يمكن استنتاج استطالة النقطة M بدلالة الزمن انطلاقا من استطالة S ؟ مثل المنحني
  - 4 ـ مثل شكل الحبل في اللحظة ذات التاريخ t=0,8s .


# التمرين 12:

تنتشر موجة ميكانيكية طول حبل أفقى . مقدمة

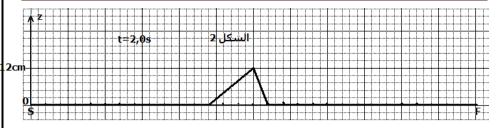
، S قوجد عند اللحظة  $t_0 = 0$  النقطة F الموجة

منيع الموجة .

بمثل المنحني أسفله مطهر الحيل عند اللحظة



- 1 ـ أحسب v سرعة انتشار الموجة الميكانيكية طول الحبل
  - 2 ما هو طول الموجة  $\ell$
- SM = 1,2m من SM = 1,2m من أي لحظة ستصل مقدمة الموجة إلى النقطة M والتي توجد على مسافة منبع الموجة S ؟ مثل مظهر الحيل في هذه اللحظة .
  - 4 ـ في أي لحظة  $t_{\rm r}$  ستغادر الموجة النقطة M من الحيل ؟
  - . t حركة النقطة M من الحبل بدلالة الزمن  $y_{M}(t)$  حركة النقطة M


# التمرين 13 : انتشار موجة على سطح الماء

من ارتفاع h = 80cm ، نترك كرية تسقط رأسيا بدون سرعة بدئية نحو حوض مائي اسطواني الشكل شعاعه R = 60cm الشكل

www.chimiephysique. ma

5





- 2 \_ 1 قارن بين الشكل 1 و الشكل 2
- 2 \_ 2 حدد v سرعة انتشار الموجة .
- . t = 3.0s مثل مظهر الحيل عند اللحظة
- . t بدلالة الزمن S بدلالة الزمن ،  $z_s(t)$  مثل المنحنى .  $z_s(t)$
- 4 ــ لـتكن A نقطـة مـن الحبـل والتـي تبعـد بمسـافة SA = 2,0m مـن المنبـع S . كيـف تتحـرك .  $\Delta\theta$  بالنسبة للمنبع S ؟ أحسب التأخر الزمنى  $\Delta\theta$

الجزء الثاني : تأثير بعض البرامترات

الكتلة الطولية للحيل ل kg/m الكتلة

- 1 ــ نعيـد نفـس التجربـة السـابقة بحيـث أن مـدة التشـوه فـي هـذه الحالـة Δt'=0,70s ، هـل تتغير سرعة انتشار الموجة ؟ إذا كان الجواب ينعم كيف يتم هد التغير ؟
- μ و N تـوتر الحبـل ب النيـوتن T ،  $v=\sqrt{\frac{T}{\mu}}$  و 2 تـوتر الحبـل ب النيـوتن N و 2 تـوتر الحبـل ب النيـوتن

2 \_\_ 1 يعيــد المجــرب نفــس التجربــة الســابقة ( الجــزء الأول ) حيــث نحــتفظ بــنفس مــدة

- التشــويه Δt = 0,50s ونضاعف تــوتر الحبــل . هــل تتغيــر ســرعة انتشــار الموجــة ؟ إذا كــان الجواب ينعم فكيف ذلك ؟
  - 2 \_ 2 أحسب الكتلة الطولية للحبل .

هـل تتغيـر السـرعة v ، إذا تـم اسـتعمال ، فـي نفـس شـروط التجربـة السـابقة ( الجـزء الأول ) ، حبل له نفس الطول وكتلته ضعف الكتلة السابقة ؟ إذا كان الجواب بنعم فكيف ذلك ؟ نعطى كتلة الحبل: m = 300g